
Table of Contents

Introduction to RobotC

Part 1 – The Basics
– Section A – Setting up
– Section B – Writing a Drive Code
– Section C – Downloading a program
– Section D – Making a basic Autonomous

Part 2 – Including basic sensors
– Section A – Introduction to Sensors
– Section B – Bumper and Limit Switches
– Section C – Potentiometers

Last Edited Feb 14, 2011 Copyright © George Gillard 2011

Introduction to RobotC

RobotC is an application used for programming VEX robots. There are many
different versions of RobotC, but I highly recommend using the latest version, and
use the same version across your whole team. In this guide to RobotC, I'm using
version 2.02, a VEX Microcontroller V0.5 and a VEX 75MHz Transmitter. Everything
taught here applies to the VEXnet upgrade, but not VEXnet Cortex.

Part 1 – The Basic

Section A – Setting up

Once you have opened RobotC for IFI (VEX), open a new file (File → New →
File or Ctrl + N, Fig 1.01). First, lets start by making just a basic “drive code”,
then we'll move onto the competition code.

Fig 1.01

In your new file, use the toolbar to go to, Robot → Motors and Sensors setup.
(Fig 1.02)

Last Edited Feb 14, 2011 Copyright © George Gillard 2011

Fig 1.02

It will open a window where you enter what you want to name the motor in
the motor port gap and tick the box at the end of the line if it needs to be
reversed. Using my “test bot” I have set up the motors. (Fig 1.03) Lets say
that the left wheels motor needs to be reversed.

Fig 1.03

Once you have completed setting up your motors, click “OK”. Your code
should now look something like this (Fig 1.04):

Last Edited Feb 14, 2011 Copyright © George Gillard 2011

Fig 1.04

Now is a good time to save your code. To save, click Robot → Compile
Program or F7. It should automatically open a “Save As” window, but if not,
click File → Save As. It is a good idea to regularly save your code, as it will
not save by itself. Also, if RobotC crashes, it doesn't save your program. To
save your program, click File → Save or Ctrl + S.

Once saved, simply type in your code:

task main()
{

}

“task main” is the main task. In a competition template, there is a “pre_auton”
task, where you reset your encoders, an “autonomous” task, where you write
your autonomous and a “usercontrol” task which is where you write the code
that allows you to drive. In a task, you always write your code between the
curly brackets.

You have now fully set up you new basic code! Task main is the main task,
and this is where you will type your drive code. Task main can also be used
for testing autonomous.

Section B – Writing a Drive Code

A Drive Code is a code which allows the robot to be controlled by a
transmitter. The way we write this is (the motor port) = (the transmitter
channel).

Last Edited Feb 14, 2011 Copyright © George Gillard 2011

When we write about a motor, we write:

motor[motor name here]

There are a few exceptions, like when using functions (explained in my next
level guide, The Intermediate Guide to RobotC).

On a transmitter, there are 6 channels. They are:

Channel 1 is the sideways one on the right joystick
Channel 2 is the vertical one on the right joystick
Channel 3 is the vertical one on the left joystick
Channel 4 is the sideways one on the left joystick
Channel 5 is the back button on the left (looking from the front)
Channel 6 is the back button on the right (looking from the front)

When we write about a transmitter channel, we write

vexRT(Chchannel number here)

So that means that if we want the left wheels on Ch3 (left joystick), the code
would be:

motor[LeftWheels] = vexRT(Ch3);

This means that the value that is the output from the transmitter is the motor
speed.

Note the semicolon at the end of the line. We use them at the end of each
statement (when we tell the program something, e.g. motor[motor name] =
127;).

When we add the drive code to the program, we need to tell it that there is no
autonomous. If we don't say so, the drive code will not work. Otherwise, if we
wanted an autonomous and no drive code, we could just write the
autonomous code straight in. To tell the program there is no autonomous, we
write:

bIfiAutonomousMode = false;

Otherwise, the program will assume that there is an autonomous task.

Last Edited Feb 14, 2011 Copyright © George Gillard 2011

If we were to write the whole drive code, using tank drive (left joystick is the
left wheels, right joystick is the right wheels) with the lift and claw on the back
buttons, it would be :

When we want to use 2 controllers, instead of

vexRT(Chchannel number here)

we use

vexRT(Chchannel number hereXmtr2)

The 'Xmtr2' is what tells the program that you are programming 'transmitter
2'. So say if we wanted the wheels to be on the first controller, but the lift and
claw to be on a second controller (using tank drive and the lift on the vertical
left joystick, the claw on the horizontal right joystick), we would write:

motor[DriveLeft] = vexRT(Ch3);
motor[DriveRight] = vexRT(Ch2);
motor[lift] = vexRT(Ch3Xmtr2);
motor[claw] = vexRT(Ch1Xmtr2);

So now you have learnt how to write a drive code! All there is left to do is
download it!

Last Edited Feb 14, 2011 Copyright © George Gillard 2011

Section C – Downloading a program

When you download a program, the first thing you should do is compile the
program. When you download the program onto the robot, it will automatically
compile it, but it is still better to compile it first, to check there are no errors. It
is a good idea to regularly compile your code as you build it up to check for
errors. This can be done either Robot → Compile Program or simply F7.
Once compiled, download the code onto the microcontroller (the robots
'brain') by Robot → Compile and Download Program or simply F5. If it fails to
download, check that the robot is switched on and plugged into the computer.

If the robot that you are using has been programmed using a different version
of RobotC, or has never been programmed before, you will need to download
the Master Firmware. This can be found at Robot → Download IFI Master
Firmware. (Fig 1.05)

A pop out box will show. Select the “VEX_MASTER_V10.BIN” file and click
open. (Fig 1.06)

Fig 1.05

Last Edited Feb 14, 2011 Copyright © George Gillard 2011

Fig 1.06

Once downloaded, you will need to download the normal firmware. This is
found at Robot → Download Firmware. (Fig 1.07)

A pop up box will show. Select the “VEX VM0797.hex” file and click open.
(Fig 1.08)

Fig 1.07

Last Edited Feb 14, 2011 Copyright © George Gillard 2011

Fig 1.08

If you are using the Vexnet upgrade, you can download a program wirelessly.
This can be done by plugging the serial cable into the serial port on the
transmitter instead of into the robot's serial port. However, you should not
wirelessly download firmware, so you will need to plug into the robot for that.

Section D – Making a basic Autonomous

The easiest autonomous to make is a timed autonomous. This is basically
like “Go forward for 5 seconds at full speed then turn left and go forwards at
half speed”.

We write

wait1Msec(length of time here);

or

wait10Msec(length of time here);

The difference is counting in either milliseconds or 10 milliseconds.The main
difference between counting in milliseconds or 10milliseconds is that the

Last Edited Feb 14, 2011 Copyright © George Gillard 2011

command “wait1Msec” can count up to a maximum of 32.768 seconds,
whereas the command “wait10Msec” can count a maximum of 327.68
seconds.

It is important to say what is going to happen after that length of time, for
instance:

motor[LeftWheels] = 127;//full speed forwards
motor[RightWheels] = 127;//full speed forwards
wait1Msec(5000);//five seconds later...

Like this, you have not explained what the robot will do after five seconds, so
it will continue to go forwards. If you wanted it to stop after five seconds, the
correct way to write that would be:

motor[LeftWheels] = 127;//full speed forwards
motor[RightWheels] = 127;//full speed forwards
wait1Msec(5000);//five seconds later...
motor[LeftWheels] = 0;//stop
motor[RightWheels] = 0;//stop

Like this, you are telling it to stop moving after five seconds.

So say if we wanted the robot to go forwards for 5 seconds, then turn left, and
then go forwards for another 2 and a half seconds, the code would look like
this:

motor[LeftWheels] = 127;//full speed forwards
motor[RightWheels] = 127;//full speed forwards
wait1Msec(5000);//five seconds later...
motor[LeftWheels] = -127;//full speed backwards
motor[RightWheels] = 127;//full speed forwards
wait1Msec(1000);//one second later...
motor[LeftWheels] = 127;//full speed forwards
motor[RightWheels] = 127;//full speed forwards
wait1Msec(2500);//wait 2 and a half seconds
motor[LeftWheels] = 0;//stop
motor[RightWheels] = 0;//stop

You may have realised that throughout this tutorial I have added “//” and then
a comment. The “//” defines that the following text is a comment. Comments
in your code can be useful to help make sense of things. The different ways
to comment are:

//single line comment

Last Edited Feb 14, 2011 Copyright © George Gillard 2011

or

/*

unlimited area comment

*/

The difference is, a single line comment can be used to explain what is
happening at the end of a line of code, whereas an unlimited area comment
can be used to comment out large areas of text, or disable an area of code.

Comments show up green in RobotC,for easy spotting. Heres an example:

Part 2 – Including basic Sensors

Section A – Introduction to Sensors

Sensors are used for more accurate and precise programming. For instance,
instead of saying, go forward for __ seconds, you can say go forward __
amount of rotations. For this, we would use an encoder. Instead of saying lift
the arm for __ seconds, we could replace that with lift the arm to a certain
height. A good example of why sensors can make your programming more
accurate, is that the arm may have already been slightly raised, therefore
timing how long to raise the arm would not be accurate.

Generally you would use a potentiometer on an arm, as it is a rotation sensor,
like an encoder. The difference between a potentiometer and an encoder is
that a potentiometer can't spin numerous times, and unlike an encoder,
cannot be reset.

Sensors can also be used to tell when a robot has hit something, distance
between it and an object and movement. Sensors should be setup in the
motors and setup window (Robot → Motors and Sensors Setup) for full
performance. When doing this, you will need to define what type of sensor it

Last Edited Feb 14, 2011 Copyright © George Gillard 2011

is, by using the multi – choice drop down bar. I have done an example with a
potentiometer. (Fig 2.01)
Fig 2.01

Sensors give a number called a value. Different Sensors give a different
range of values.

Section B – Bumper and Limit Switches

The first sensor we will use is a Bumper Switch. They are little bumpers
generally used for hitting into walls, which is the example we will use them
for. Limit switches are programmed exactly the same way, the only major
difference is that a limit switch has a thin metal tab that often snaps off. These
switches, known as touch sensors, have 2 different values – 0, or 1.

0 is when they are not pressed and 1 is when they are. For learning how to
use touch sensors, we will use a basic robot with 2 motors – Left wheels and
right wheels. In this example,(Fig 2.02) the robot will will drive forwards, and
once the bumper switch has been pressed, will stop.

Last Edited Feb 14, 2011 Copyright © George Gillard 2011

Fig 2.02

Note that I have used the statement: if (SensorValue(BumperSwitch) ==
0);.This basically means what it says; if the sensor value of the bumper
switch is 1. This “if” loop is often used in conjunction with sensors. For
example: “If the arm is __ high”, or “If the wheels have turned __ many
times”. There are different ways of rewriting the code above, this is just a
basic way. Here's another way, using a “while” loop:

So this is basically saying while the sensor value of the bumper switch is 0,
go forwards. This will do exactly the same thing, it has just been written
differently. That is all there is to programming bumper switches basically! In
my next guide, The Intermediate Guide to RobotC, I will teach how to sync
multiple bumper switches together, for an even more reliable program.

Section C – Potentiometers

As explained in the introduction to sensors, potentiometers are generally
used on an arm, where it pivots. Potentiometers are a simple rotation sensor
with a range of 0 – 1024. In this section, I will teach you how to use them to
move an arm to a certain position. Please note, that the value depends on
which way the potentiometer is facing, and where it has been exactly
positioned.

Last Edited Feb 14, 2011 Copyright © George Gillard 2011

A suitable statement to use would be a “while” loop. Let's say we want the
arm to be at a sensor value of 650 on the potentiometer, with the higher the
value, the higher the arm. This may vary depending on which direction the
potentiometer is facing. This is a very basic arm raising code. It should work
providing that the arm is already set to a value less than 650. (Fig 2.03)

Fig 2.03

So this is saying “While the sensor value of the potentiometer is less than
650, raise the arm”. And that's the very basic way of using a potentiometer. In
my next guide, The Intermediate Guide to RobotC, I will teach how to make a
more reliable and efficient way of using the potentiometers, as well as using
them in pre-set heights, for easier driving.

End of The Beginners Guide to RobotC, By
George Gillard

Please note: The code provided may not have been tested, so
is not guaranteed to work.

Last Edited Feb 14, 2011 Copyright © George Gillard 2011

	Introduction to RobotC
	Part 1 – The Basic
	Section A – Setting up
	Section B – Writing a Drive Code
	Section C – Downloading a program
	Section D – Making a basic Autonomous

	Part 2 – Including basic Sensors
	Section A – Introduction to Sensors
	Section B – Bumper and Limit Switches
	Section C – Potentiometers

